I Congreso de Regulación de Servicios Públicos:

LA CALIDAD COMO UN DERECHO CIUDADANO

Aprovechamiento de Residuos Biomásicos para la Generación de Energía

Ing. Luis MI. Sánchez Esquierdo, M. Eng.

<u>energiabiomasica@gmail.com</u> <u>I.sanchez@gassolbluecoenergylatinamerican.com</u>

Tel.: (506) 8895-0865

26 de setiembre, 2018

Panel Intergubernamental de Cambio Climático (IPCC)

- Las concentraciones GEI están aumentando (35% desde 1750).
- Los GEI provocan el calentamiento global.
- Las concentraciones GEI podrían duplicarse en 2050 y triplicarse en 2100.
- Existen pruebas de que el calentamiento ya ha comenzado: (0.4 0.8°C/10 20cm).
- Comparativo 1990 2100:
- ✓ Temperatura: 1.4 6.4 °C.
- ✓ Nivel del mar: 8 88 cm.

Causas de la Crisis Climática

- Desarrollo económico y crecimiento de la población (aumento en la producción, uso intensivo de recursos naturales y mayor demanda energía).
- Uso inapropiado de la tecnología (mundo fosilizado).
- Inhabilidad de los mercados para valorar externalidades y servicios ambientales.

GEI (Gases Efecto Invernadero)

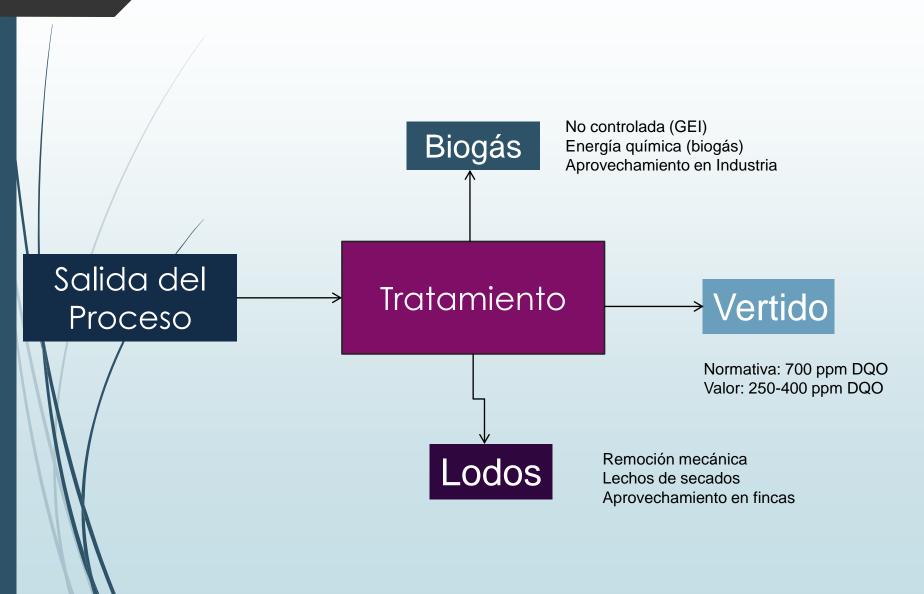
A. Fuentes:

90%Lagunas AnaerobiasPatio de desechos

6% Diésel Calderas Alta Presión

B. Diferencia (opciones):

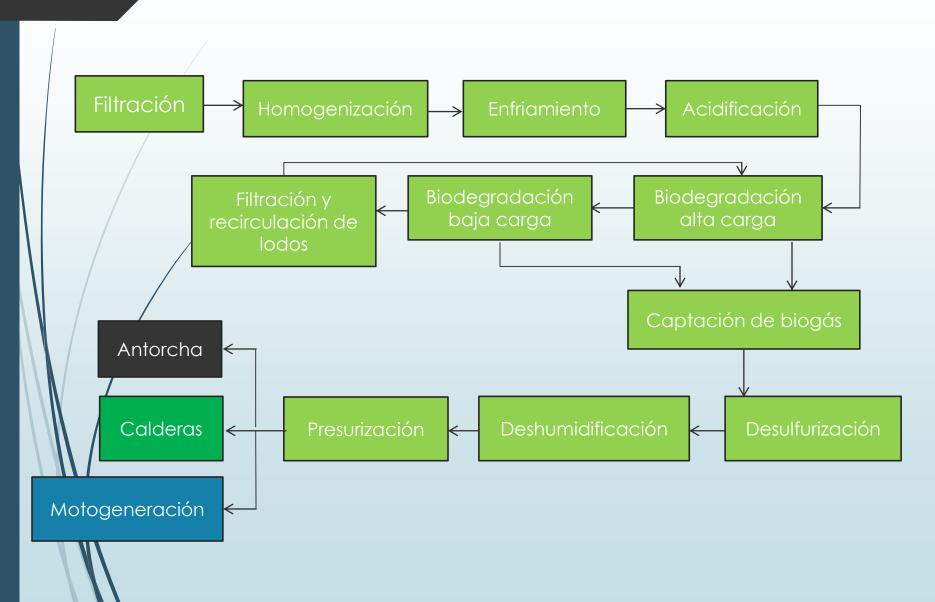
- ✓ Biometano
- √ Biodiésel


Responsabilidad Social Empresarial (Sostenibilidad)

- ✓ Autosuficiencia energética.
- Responsabilidad ambiental.
- Reducción de riesgos por denuncias ambientales.
- ✓/ Cumplimiento del mandato legal.
- Calificación internacional. Posicionamiento.

¿Qué es un Biodigestor?

- Es un sistema biológico, amigable con el ambiente.
- Las aguas residuales entran a un reactor en ausencia total de oxígeno.
- El ambiente anaerobio promueve la biodegradación de los desechos orgánicos contenidos en las aguas residuales.
- Este proceso biológico transforma la materia orgánica en energía (biogás).


AGUAS RESIDUALES

Beneficios

- Utilizar la energía contenida en los desechos gaseosos del STAR (utilizar un desecho como fuente de energía).
- Uso de fuente de energía limpia y renovable → Sustitución de combustibles.
- Reducción de malos olores.
- Disminución de emisiones de gases contaminantes.
- Mayor capacidad dentro del sistema de tratamiento de aguas residuales → Menor contaminación.
- Reducción de "huella de carbono".
- Proyecto de vanguardia en el mundo.
- Ahorros/ingresos (sustitución de diesel y generación de electricidad/CER´s).

Proceso de Tratamiento

Análisis del Consumo Energético

CONSUMO ANUAL

	DIESEL		
Año	Litros	Costo	Electricidad
2010	259.378,00	\$262.799,69	\$1.369.922,00
2011	304.144,00	\$359.051,87	\$1.462.210,00
2012	283.144,00	\$348.065,71	\$1.621.397,00
2013	239.795,00	\$299.638,26	\$1.739.802,00
			Fuente: Departamento de Costos

CALDERAS

CARACTERÍSTICAS TÉCNICAS

	Identificación del Tipo de Caldera				
Característica	1	2	3	Geka 1	Geka 2
Marca	Distral	Distral	Frasier	Gekakonus	Gekakonus
Año	1993	1993	2006	1999	2005
Modelo	ATS-15	ATS-15	FR 16/46B	Nuk-hp 300	Nuk-hp 465
Serie	A-2777	A-2777	PV-691	7831-3	580/05
Potencia (kW)				410	435
Fabricante	Distral, S.A.	Distral, S.A.	Petra	WSA	WSA
Combustible	Biomasa	Biomasa	Biomasa	Diesel	Diesel
Eficiencia de quemadores				86%	86%
Capacidad (kg _{vapor} /hr)	12000	12000	30000	980	1067
Capacidad de agua (lt/hr)	26448	26448		155	320
Presión de diseño (psig)	375	375	360	1125	1200
Temperatura de diseño (°C)			250	291	296
Superficie de calentamiento (m²)			1011	30.5	23

Fuente: Mantto Industrial, Información de placas

Parámetros del Proyecto

- Biogás:
- > Sustitución de diesel:
- > Sustitución de diesel:
- > Generación eléctrica:
- Generación eléctrica:
- Generación bonos C:

31 m³/TM RFF

7,9 gal/TM RFF

0,256 gal/m³ biogás

0,1 kW/m³ biogás

74,4 kWh/TM RFF

0.14 CERs/TM RFF

(3E4 CERs/año)

MOTOGENERACIÓN

- Motor de combustión interna.
- Utiliza biogás como combustible.
- Gases de combustión mueven turbina.
- Generación de energía eléctrica.

<u>Motogenerador</u> de 1426 kW

TURBOGENERACIÓN

- Caldera de biomasa.
- Sobrecalentador.
- Sistema de instalación.
- Turbina.
- Vapor mueve la turbina.
- Generación de energía eléctrica.

PARALELISMO Y SINCRONIZACIÓN

- Diferentes fuentes de energía eléctrica.
- Sistema de conducción hasta el sistema de distribución.
- Ordenamiento del sistema de distribución.
- Ampliación de capacidad del sistema de distribución.
- Sincronización de todos los sistemas de generación y demanda.
- Distribución de la energía eléctrica según demanda.

INVERSIÓN EN PROYECTOS ENERGÉTICOS

	Monto		
Proyecto	Inversión	Ahorro/Año	
Biodigestor/Quemadores Calderas Alta Presión/Diesel	\$5.600.000,00	\$700.000,00	
Biodigestor/Operación STAR actual	-	\$700.000,00	
Biodigestor/Motogenerador/Generación Eléctrica	\$1.200.000,00	\$1.300.000,00	
Biodigestor/Sincronización/Calidad de energía	\$1.250.000,00	\$200.000,00	
Turbogenerador/Generación Eléctrica	\$1.000.000,00	\$750.000,00	
Caldera #4	\$8.100.000,00	-	
Palmistería/Eficiencia de operación	\$1.200.000,00	\$600.000,00	

\$18.350.000,00 \$4.250.000,00

PORTAFOLIO DE PROYECTOS

ÍNDICES FINANCIEROS

- Valor actual neto (VAN): \$8,046,625,00
- Tasa interna de retorno (TIR): 27%

Potencial de Generación de Energía Eléctrica

Biodigestor:	3 MW

- Caldera #3 (baja presión):
 3 MW
- **Caldera #4 (alta presión):** 10 MW
- Caldera #5 nueva (condensación): 4 MW
- **Gases de combustión :** 5 MW
- ► Agua Caliente: 3 MW
- Solar: 5 MW

COMPLEJO DE GENERACIÓN DE ENERGÍAS Y SOSTENIBILIDAD

(Económica, Ambiental y Social)

IDEAS DE EFICIENCIA ENERGÉTICA

- 1. Aprovechamiento energía térmica de gases de combustión del Motogenerador: calentar agua, utilizada en las operaciones unitarias de los procesos productivos.
- 2. Aprovechamiento energía térmica de los gases de combustión del Motogenerado: calentar agua y/o aire para las Calderas Biomásicas.
- 3. Aprovechamiento energía térmica de los gases de combustión del Motogenerador: sustituir vapor de baja presión requerido en la Planta de Refinación.
- 4. Aprovechamiento energía térmica de los gases de combustión de las Calderas Biomásicas: calentar agua, utilizada en las operaciones unitarias de los procesos productivos.
- 5. Aprovechamiento energía térmica de los gases de combustión de las Calderas Biomásicas: calentar agua y/o aire para las mismas Calderas.
- 6. Aprovechamiento energía térmica de los gases de combustión de las Calderas Biomásicas: para sustituir vapor de baja presión requerido en la Planta de Refinación.
- 7. Aprovechamiento de calor remanente para establecer red de frío: aires acondicionados.
- 8. /Uso de anillo de presión para aire comprimido.
- 9/ Aislamiento de tuberías de transporte de vapor y condensados: evitar pérdidas.
- 10. Aprovechamiento del calor recuperado de las trampas de vapor: calentar agua de proceso o agua y/o aire de Calderas.
- 11. Aprovechamiento del vapor de alta presión de la nueva Caldera para generar energía eléctrica con un turbogenerador multietapas: 10 MW de potencia. Venta futura.
- 12. Aprovechamiento del exceso de biogás para instalar un segundo Motogenerador, generación de energía eléctrica: 3 MW de potencia. Venta futura.
- 13. Generación energía eléctrica a partir de paneles solares: 5 MW de potencia. Venta futura.
- 14. Transformación de desechos sólidos a electricidad (pirólisis). Venta futura.
- 15. Compresión del excedente de biogás. Mejorará consumo de combustibles fósiles (carbono-neutralidad).
- 16. Utilización de aceites de baja calidad para la producción de biocombustibles. Sustituirá consumo de combustibles fósiles (carbono-neutralidad).
- 17. Compostaje de la biomasa: manejo de los desechos sólidos.
- 18. Aumentar la eficiencia del consumo hídrico.
- 19. Implementar medidores de consumo eléctrico y programa de Eco-Eficiencia.
- 20. Utilización de luces LED.
- 21. Concentración y control de impresiones digitales: ahorro de papel/reducción uso equipos.

"La historia la hacen los pioneros ..."

