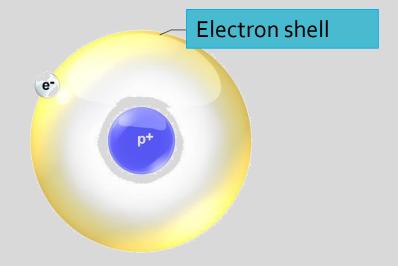


El Hidrógeno y Su Papel En la Descarbonización de Costa Rica


27 de setiembre de 2018

Franklin R. Chang Díaz Ad Astra Rocket Company, CR

- El elemento más abundante
- El más simple
- Gas invisible, inflamable, no tiene olor
- Combinado con el oxígeno produce agua
- Muchos usos industriales y como combustible

El hidrógeno NO es una Fuente de energía, es una forma de almacenarla (como una represa)

Por qué Hidrógeno: Medio Ambiente

- Cero carbono y emisiones contaminantes
- Biproductos: oxígeno y agua pura también son útiles y amigables con el ambiente
- · Ciclo del agua es reversible
- Abundancia sin impacto ambiental

Por qué Hidrógeno:

Como combustible para el transporte

- Kilo por kilo el hidrógeno tiene la mayor densidad energética de todos los combustibles
- Es ideal para vehículos de transporte masivo y de carga
- Se transporta como electricidad
- Es consistente con la generación distribuida
- Complementa el esfuerzo ya iniciado en vehículos eléctricos de baterías

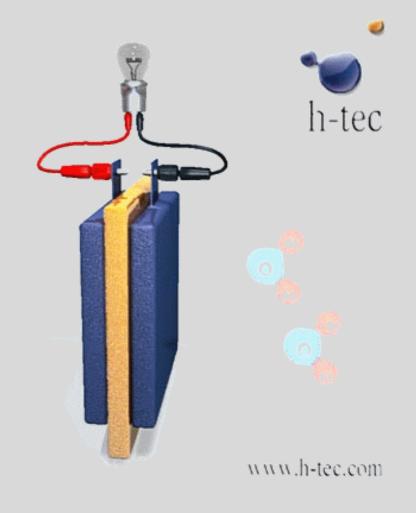
Por qué Hidrógeno:

Beneficios económicos para Costa Rica

- ~1.3B\$ anuales que se gastan en importar combustible, se quedan en el pais
- Impuesto de equivalentes ventas de hidrógeno, oxígeno, agua pura, aumentan ingreso al fisco
- Nuevas industrias para el país
- Tecnología exportable
- Se crean nuevos empleos y de mayor remuneración
- Fortalece la marca país

Por qué Hidrógeno:

Proyección global de Costa Rica


- Costa Rica se convierte en líder mundial en tecnologías limpias
- Exporta su conocimiento en la región y ayuda a otros países a independizarse del petróleo

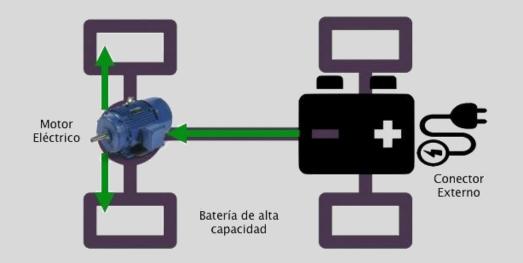
¿Qué es una Celda de Combustible?

- Combina hidrógeno a bordo del vehículo con oxígeno del aire
- Genera electricidad y agua pura
- No tiene partes movibles



Tecnología del Programa Espacial

- Alimentó las naves Gemini y Apollo en los 1960s
- Los Transbordadores Espaciales entre 1980-2010
- Otros...



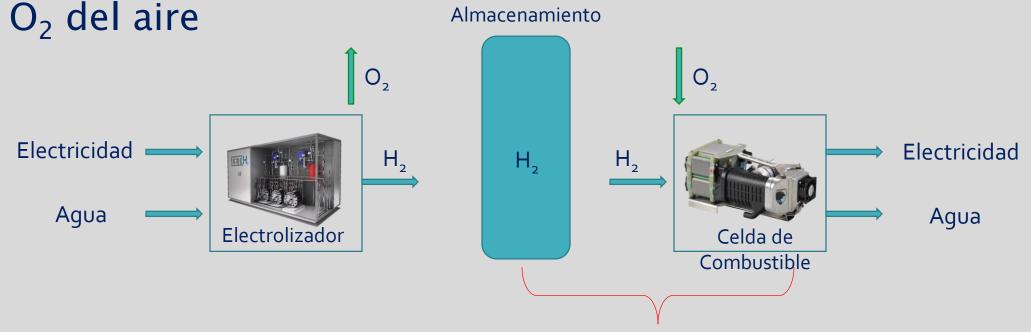
Dos tipos de vehículos eléctricos

 Vehículos eléctricos de baterías (BEV) Vehículos eléctricos de hidrógeno (FCEV)

Esta combinación almacena más energía, más rápido y pesa menos que la batería

Rocket Company ** ASTRA

Útil en todo tipo de transporte



El Ciclo del Hidrógeno

 Hidrógeno y oxígeno se producen de electricidad doméstica y limpia (solar, eólica, hidro, geo...) y agua

· Agua pura y electricidad se recuperan del hidrógeno y el

Esta combinación almacena más energía, más rápido y pesa menos que una batería

El entorno nacional

Balance Energético de Costa Rica

- Consumo:
 - ~ 30,000 TJ/año electricidad (producción doméstica)
 - ~ 100,000 TJ/año hidrocarburos (importados)
- Reto para descarbonizar:
 Reemplazar ~ 100,000 TJ/año de hidrocarburos importados por hidrógeno de producción doméstica
- ¿Hay suficiente energía renovable? Sí √ el potencial renovable es ~ 338,400 TJ/año

Punto de Partida

Crear un ecosistema de transporte, basado en hidrógeno, limpio, renovable, que permita medir la viabilidad financiera y conveniencia de este modelo en Costa Rica.

Fase #1 Viabilidad técnica

Completa

- Producción pequeña demuestra viabilidad técnica
- Electricidad del exceso de capacidad de Ad Astra
- No se captura el oxígeno
- · Frecuencia de operación limitada
- Tarifa gratis

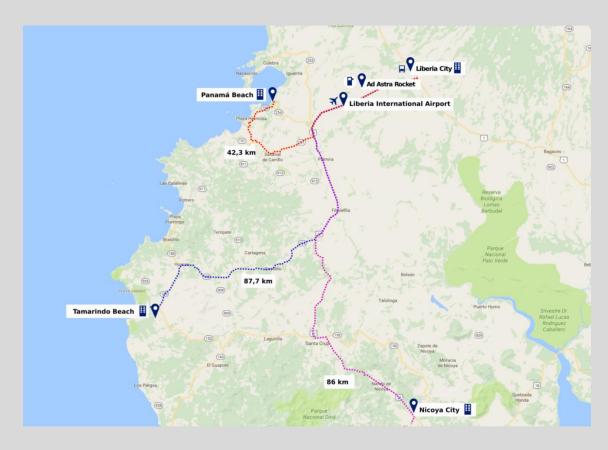
Partnership and contribution

Partner	Contribution	Partner	Contribution
Rocket Company	Project leader and overall manager, System design, development, integration and operation	Curtifinitis	Wind turbine partner and bus lessee
COSTA RICA COBIERNO OT VA REPUBLICA Banca para el Desarrollo S B D	Initial H2 infrastructure, feasibility studies and integration funds	🕏 US Hybrid	Subsidized bus lease and maintenance
AirLiquide	H2 dispenser, electrolyzer and additional high pressure Storage	RELAXURY PURDY MOTOR COSTA RICA	Bus lessee and operator during implementation phase

2^a Fase 2(2018–2020)

Air Liquide

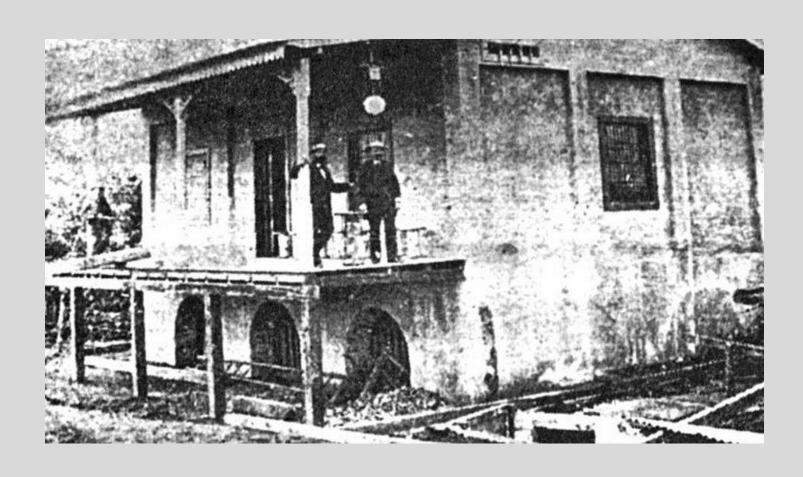
Purificación y Envasado


Desarrollo

Rutas propuestas

Liberia - International Airport
 15 km (30 km / circuit)

- Liberia Playa Panamá, 42.3 km (84.6 km / circuit)
- Liberia Tamarindo, 87.7 km (175.4 km / circuit)
- Liberia Nicoya, 86 km (172 km / circuit)



Ya estamos en el mapa

La descarbonización de Costa Rica la inician M. Dengo y L. Batres en el año 1884

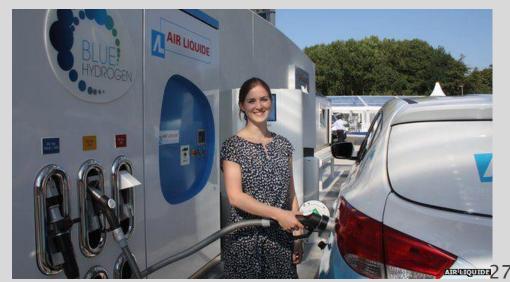
La disrupción ocurre rápido

New York City 1900

New York City 1913

Algunos argumentos

- Sí, es más eficiente almacenar energía en baterías que producir hidrógeno
- Pero los vehículos de baterías son más pesados que los de hidrógeno y requieren más energía para desplazarse
- · La ganancia en eficiencia la pierde por el peso


El tiempo de recarga es un factor importante

 Los vehículos de baterías duran horas en recargarse

 Los vehículos de hidrógeno se recargan en pocos minutos

- Sí, es cierto que los puestos de recarga de baterías son más baratos
- Sin embargo, un puesto de recarga de hidrógeno atiende mas de 10 vehículos en el tiempo que uno de baterías atiende uno

- Para el uso de vehículos en terrenos con muchas cuestas, la batería tiende a perder fuerza al bajar su carga
- Los vehículos de hidrógeno no sufren de esa condición.
 La celda de combustible sigue operando a la misma potencia hasta que se acabe el hidrógeno

En realidad ambas modalidades son útiles

- Los vehículos de baterías son apropiados cuando se usan en viajes cortos y con tiempo de recarga (por ejemplo, vehículos particulares que se recargan durante la noche)
- Los vehículos de hidrógeno son más apropiados cuando el vehículo debe mantenerse en operación continuamente (por ejemplo, taxis, algunos buses, trenes, camiones, aviones, barcos, montacargas, etc.)

¡Muchas Gracias!